Opening the Pod Bay Doors: Building Intelligent Agents That Can Interpret, Generate and Learn from Natural Language
Opening the Pod Bay Doors: Building Intelligent Agents That Can Interpret, Generate and Learn from Natural Language

Abstract: 

Thanks to advances in imitation and reinforcement learning techniques, we can now train intelligent agents to accomplish a diverse range of goals. But if we want to create household robots or personal assistants that can take advantage of this diversity, we need to give users some way to tell them what to do! This tutorial will focus on humans' favorite tool for communicating goals and plans: natural language. We'll assume basic familiarity with supervised learning and RL, and begin with a review of core machine learning techniques useful for natural language instruction following problems. The body of the talk will focus on modeling techniques for instruction following problems in different kinds of environments and data conditions. We'll conclude with a survey of other applications for the tools we've built, including instruction generation, interpretability, and machine teaching.

Bio: 

Coming soon!

Privacy Settings
We use cookies to enhance your experience while using our website. If you are using our Services via a browser you can restrict, block or remove cookies through your web browser settings. We also use content and scripts from third parties that may use tracking technologies. You can selectively provide your consent below to allow such third party embeds. For complete information about the cookies we use, data we collect and how we process them, please check our Privacy Policy
Youtube
Consent to display content from Youtube
Vimeo
Consent to display content from Vimeo
Google Maps
Consent to display content from Google