Statistical Machine Learning

Abstract: 

The novel coronavirus disease (COVID-19) has emerged as a global pandemic, and caused over 4.5 million deaths in the world. In this talk, I will introduce our project (https://covid19.uclaml.org) using an epidemic model-guided machine learning approach to understand and forecast the spread of COVID-19 and further facilitate the decision making of the government agencies. In specific, I will introduce our UCLA-SuEIR model, which is a variant of the SEIR model and takes into account the unreported cases of COVID-19. Our model can provide forecasts of COVID-19 confirmed cases and deaths, as well as hospital/ICU bed occupancy at county, state and national level. Our forecasts are being used by the Centers for Disease Control and Prevention (CDC) and California Department of Public Health (CDPH). Various performance evaluations indicate that our model is consistently among the top three forecast models used by CDC.

Bio: 

Quanquan Gu is an Assistant Professor of Computer Science at UCLA and the director of the statistical machine learning lab. His research is in the area of artificial intelligence and machine learning, with a focus on developing and analyzing nonconvex optimization algorithms for machine learning to understand large-scale, dynamic, complex, and heterogeneous data and building the theoretical foundations of deep learning and reinforcement learning. He received his Ph.D. degree in Computer Science from the University of Illinois at Urbana-Champaign in 2014. He is a recipient of the Yahoo! Academic Career Enhancement Award, NSF CAREER Award, Simons Berkeley Research Fellowship among other industrial research awards. He leads a team at UCLA using machine learning to forecast the spread of COVID-19 (https://covid19.uclaml.org) and their model has been adopted by the U.S. Centers for Disease Control and Prevention and the California Department of Public Health.

Open Data Science

 

 

 

Open Data Science
One Broadway
Cambridge, MA 02142
info@odsc.com

Privacy Settings
We use cookies to enhance your experience while using our website. If you are using our Services via a browser you can restrict, block or remove cookies through your web browser settings. We also use content and scripts from third parties that may use tracking technologies. You can selectively provide your consent below to allow such third party embeds. For complete information about the cookies we use, data we collect and how we process them, please check our Privacy Policy
Youtube
Consent to display content from - Youtube
Vimeo
Consent to display content from - Vimeo
Google Maps
Consent to display content from - Google