Open-source Best Practices in Responsible AI


Machine learning has been hastily operationalised, often with little regard for its wider societal impact. At the same time, there's been a lack of clear, concrete guidelines on how to reduce the risks stemming from AI.

With that in mind, we have started a Non-profit organization, the Foundation for Best Practices in Machine Learning. Our goal is to help data scientists, governance experts, managers, and other machine learning professionals implement ethical and responsible machine learning. We do that via our free, open-source technical and organisational Best Practices for Responsible AI.

These guidelines have been developed principally by senior ML engineers, data scientists, data science managers, and legal professionals. The Foundation’s philosophy is that (a) context is key, and (b) responsible ML starts with prudent MLOps and product management.

The technical and organisational best practices look at both the technical and institutional requirements needed to promote responsible ML. Both blueprints touch on subjects such as “Fairness & Non-Discrimination”, “Representativeness & Specification”, “Product Traceability”, “Explainability” amongst other topics. Where the organisational guide relates to organisation-wide process and responsibilities (f.e. the necessity of setting proper product definitions and risk portfolios); the model guide details issues ranging from cost function specification & optimisation to selection function characterization, from disparate impact metrics to local explanations and counterfactuals. It also addresses issues concerning thorough product management.


Violeta has been interested in understanding the causes of social inequalities and to what extent bad experiences early in life propagate to negative outcomes later. When she realized ML can result in widening already existing social gaps, she became an advocate for the responsible development and deployment of ML. Violeta currently works as a data scientist at ABN Amro. Before that, she worked in consultancy and obtained her PhD in applied econometrics. Violeta likes sharing her knowledge with others by the form of workshops on data science and online courses. Violeta proposes that developers of ML solutions alone cannot ensure their safety but, rather, that the additional efforts of multidisciplinary experts as well as proper regulation is also needed.

Open Data Science




Open Data Science
One Broadway
Cambridge, MA 02142

Privacy Settings
We use cookies to enhance your experience while using our website. If you are using our Services via a browser you can restrict, block or remove cookies through your web browser settings. We also use content and scripts from third parties that may use tracking technologies. You can selectively provide your consent below to allow such third party embeds. For complete information about the cookies we use, data we collect and how we process them, please check our Privacy Policy
Consent to display content from - Youtube
Consent to display content from - Vimeo
Google Maps
Consent to display content from - Google