Look, Listen, Read: Unified AI with TorchMultimodal


Multimodal AI is a fast-growing field where deep neural networks are trained using multiple types of input data simultaneously (e.g. text, image, video, audio). Multimodal models perform better in content understanding applications, and are setting new standards for content generation in models such as DALL-E and StableDiffusion. Building multimodal models is hard; In this session we share more about multimodal AI, why you should care about it, what are some challenges you might face and how TorchMultimodal, our new PyTorch domain library eases the developer experience of building multimodal models.


Suraj is an ML engineer and developer advocate at Meta AI. In a previous life, he was a data scientist in personal finance. After being bitten by the deep learning bug, he worked in healthcare research (predicting patient risk factors) and behavioral finance (preventing overly-risky trading). Outside of work, you can find him hiking barefoot in the Catskills or being tossed on the Aikido mat.

Open Data Science




Open Data Science
One Broadway
Cambridge, MA 02142

Privacy Settings
We use cookies to enhance your experience while using our website. If you are using our Services via a browser you can restrict, block or remove cookies through your web browser settings. We also use content and scripts from third parties that may use tracking technologies. You can selectively provide your consent below to allow such third party embeds. For complete information about the cookies we use, data we collect and how we process them, please check our Privacy Policy
Consent to display content from - Youtube
Consent to display content from - Vimeo
Google Maps
Consent to display content from - Google