Incremental-decremental Methods For Time Series Analysis
Incremental-decremental Methods For Time Series Analysis

Abstract: 

An incremental-decremental algorithm adds and removes points from a sample/training set in an efficient way - typically with finite memory overhead, and finite computation for each add/remove operation. We will explain some incremental-decremental methods we developed for the purpose of maintaining rolling window statistics. The techniques include a novel representation of a computation as a DAG, and adaptations of ideas from econometrics. As a consequence, we expand the range of anomaly detection, forecasting, and time series classification that can be performed in the streaming setting.

Our methods were motivated by use cases from infrastructure monitoring, and certain UX and platform requirements for a data-intensive monitoring product. The talk will provide some business context.

Bio: 

Joe Ross holds a PhD in mathematics from Columbia University and was a researcher and instructor in pure mathematics, most recently at the University of Southern California. He has worked as a data scientist at machine learning/analytics startups for several years; in his current role at SignalFx, he focuses on a variety of time series problems.

Open Data Science

 

 

 

Open Data Science
One Broadway
Cambridge, MA 02142
info@odsc.com

Privacy Settings
We use cookies to enhance your experience while using our website. If you are using our Services via a browser you can restrict, block or remove cookies through your web browser settings. We also use content and scripts from third parties that may use tracking technologies. You can selectively provide your consent below to allow such third party embeds. For complete information about the cookies we use, data we collect and how we process them, please check our Privacy Policy
Youtube
Consent to display content from - Youtube
Vimeo
Consent to display content from - Vimeo
Google Maps
Consent to display content from - Google