Get Started with Time-Series Forecasting using the Google Cloud AI Platform

Abstract: 

Predicting the future has always been a fascinating topic. Now we have AI tools and techniques that can help us do it better than ever before. In this session, we'll cover the fundamentals of solving time-series problems with AI, and show how it can be done with popular data science tools such as Pandas, TensorFlow, and the Google Cloud AI Platform.

We'll start with how to visualize, transform, and split time-series data for use in an ML model. We'll also discuss both statistical and machine learning techniques for predictive analytics. Finally, we'll show how to train a demand forecasting model in the cloud and make predictions with it. Attendees can access Jupyter notebooks after the session to review the material in more detail.

Bio: 

Karl Weinmeister is a Developer Relations Engineering Manager at Google, based out of Austin, Texas. Karl leads a global team of data science and ML engineering experts in the Developer Advocacy organization, who build technical assets and consult with enterprise customers on Artificial Intelligence and Machine Learning. Karl was a contributor to Proverb, an AI-based crossword puzzle solver, which competed at the American Crossword Puzzle Tournament.

Open Data Science

 

 

 

Open Data Science
One Broadway
Cambridge, MA 02142
info@odsc.com

Privacy Settings
We use cookies to enhance your experience while using our website. If you are using our Services via a browser you can restrict, block or remove cookies through your web browser settings. We also use content and scripts from third parties that may use tracking technologies. You can selectively provide your consent below to allow such third party embeds. For complete information about the cookies we use, data we collect and how we process them, please check our Privacy Policy
Youtube
Consent to display content from Youtube
Vimeo
Consent to display content from Vimeo
Google Maps
Consent to display content from Google