From Experimentation to Products: The Production ML Journey

Abstract: 

An ML journey typically starts with trying to understand the world, and looking for data that describes it. This leads to an experimentation phase, where we try to use that data to model the parts of the world that we’re interested in, often because they directly affect our users or our business. Once we have one or more models that deliver good results, it’s time to move those models into production.

Deploying advanced Machine Learning technology to serve customers and/or business needs requires a rigorous approach and production-ready systems. This is especially true for maintaining and improving model performance over the lifetime of a production application. Unfortunately, the issues involved and approaches available are often poorly understood.

An ML application in production must address all of the issues of modern software development methodology, as well as issues unique to ML and data science. Often ML applications are developed using tools and systems which suffer from inherent limitations in testability, scalability across clusters, training/serving skew, and the modularity and reusability of components. In addition, ML application measurement often emphasizes top level metrics, leading to issues in model fairness as well as predictive performance across user segments.

We discuss the use of ML pipeline architectures for implementing production ML applications, and in particular we review Google’s experience with TensorFlow Extended (TFX), as well as the advantages of containerizing pipeline architectures using platforms such as Kubeflow. Google uses TFX for large scale ML applications, and offers an open-source version to the community. TFX scales to very large training sets and very high request volumes, and enables strong software methodology including testability, hot versioning, and deep performance analysis.

Background Knowledge
Basic familiarity with ML modeling and feature engineering

Bio: 

A data scientist and TensorFlow addict, Robert has a passion for helping developers quickly learn what they need to be productive. He’s used TensorFlow since the very early days and is excited about how it’s evolving quickly to become even better than it already is. Before moving to data science Robert led software engineering teams for both large and small companies, always focusing on clean, elegant solutions to well-defined needs.

Open Data Science

 

 

 

Open Data Science
One Broadway
Cambridge, MA 02142
info@odsc.com

Privacy Settings
We use cookies to enhance your experience while using our website. If you are using our Services via a browser you can restrict, block or remove cookies through your web browser settings. We also use content and scripts from third parties that may use tracking technologies. You can selectively provide your consent below to allow such third party embeds. For complete information about the cookies we use, data we collect and how we process them, please check our Privacy Policy
Youtube
Consent to display content from - Youtube
Vimeo
Consent to display content from - Vimeo
Google Maps
Consent to display content from - Google