Designing Modern Streaming Data Applications
Designing Modern Streaming Data Applications

Abstract: 

Many industry segments have been grappling with fast data (high-volume, high-velocity data). The enterprises in these industry segments need to process this fast data just in time to derive insights and act upon it quickly. Such tasks include but are not limited to enriching data with additional information, filtering and reducing noisy data, enhancing machine learning models, providing continuous insights on business operations, and sharing these insights just in time with customers. In order to realize these results, an enterprise needs to build an end-to-end data processing system, from data acquisition, data ingestion, data processing, and model building to serving and sharing the results. This presents a significant challenge, due to the presence of multiple messaging frameworks and several streaming computing frameworks and storage frameworks for real-time data. In the proposed tutorial, we shall lead a journey through the landscape of state-of-the-art systems for each stage of an end-to-end data processing pipeline, messaging frameworks, streaming computing frameworks, storage frameworks for real-time data, and more. We shall also share case studies from the IoT, gaming, and healthcare as well as our experience operating these systems at internet scale at Twitter and Yahoo. We shall conclude by offering perspectives on how advances in hardware technology and the emergence of new applications will impact the evolution of messaging systems, streaming systems, storage systems for streaming data, and reinforcement learning-based systems that will power fast processing and analysis of a large (potentially of the order of hundreds of millions) set of data streams.

Bio: 

Until recently, Arun Kejariwal was a statistical learning principal at Machine Zone (MZ), where he led a team of top-tier researchers and worked on research and development of novel techniques for install and click fraud detection and assessing the efficacy of TV campaigns and optimization of marketing campaigns. In addition, his team built novel methods for bot detection, intrusion detection, and real-time anomaly detection. Previously, Arun worked at Twitter, where he developed and open-sourced techniques for anomaly detection and breakout detection. His research includes the development of practical and statistically rigorous techniques and methodologies to deliver high-performance, availability, and scalability in large-scale distributed clusters. Some of the techniques he helped develop have been presented at international conferences and published in peer-reviewed journals.

Privacy Settings
We use cookies to enhance your experience while using our website. If you are using our Services via a browser you can restrict, block or remove cookies through your web browser settings. We also use content and scripts from third parties that may use tracking technologies. You can selectively provide your consent below to allow such third party embeds. For complete information about the cookies we use, data we collect and how we process them, please check our Privacy Policy
Youtube
Consent to display content from Youtube
Vimeo
Consent to display content from Vimeo
Google Maps
Consent to display content from Google