
Abstract: Applying my Netflix experience to a real-world problem in the ML and AI world, I will demonstrate a full-featured, open-source, end-to-end TensorFlow Model Training and Deployment System using the latest advancements from Kubernetes, Istio, and TensorFlow.
In addition to training and hyper-parameter tuning, our model deployment pipeline will include continuous canary deployments of our TensorFlow Models into a live, hybrid-cloud production environment.
This is the holy grail of data science - rapid and safe experiments of ML / AI models directly in production.
Following the Successful Netflix Culture that I lived and breathed (https://www.slideshare.net/reed2001/culture-1798664/2-Netflix_CultureFreedom_Responsibility2), I give Data Scientists the Freedom and Responsibility to extend their ML / AI pipelines and experiments safely into production.
Offline, batch training and validation is for the slow and weak. Online, real-time training and validation on live production data is for the fast and strong.
Learn to be fast and strong by attending this talk.
Bio: Chris Fregly is Founder and Research Engineer at PipelineAI, a Streaming Machine Learning and Artificial Intelligence Startup based in San Francisco. He is also an Apache Spark Contributor, a Netflix Open Source Committer, founder of the Global Advanced Spark and TensorFlow Meetup, author of the O’Reilly Training and Video Series titled, "High Performance TensorFlow in Production."
Previously, Chris was a Distributed Systems Engineer at Netflix, a Data Solutions Engineer at Databricks, and a Founding Member and Principal Engineer at the IBM Spark Technology Center in San Francisco.

Chris Fregly
Title
Founder and Research Scientist at PipelineAI, Apache Spark Contributor, Author of the upcoming book, Advanced Spark
Category
europe2017 | west2017talks
