
Abstract: Recent technological developments are creating new spatio-temporal data streams that contain a wealth of information relevant to sustainable development goals. Modern AI techniques have the potential to yield accurate, inexpensive, and highly scalable models to inform research and policy. As a first example, I will present a machine learning method we developed to predict and map poverty in developing countries. Our method can reliably predict economic well-being using only high-resolution satellite imagery. Because images are passively collected in every corner of the world, our method can provide timely and accurate measurements in a very scalable end economic way, and could revolutionize efforts towards global poverty eradication. As a second example, I will present some ongoing work on monitoring food security outcomes.
Bio: Stefano Ermon is currently an Assistant Professor in the Department of Computer Science at Stanford University, where he is affiliated with the Artificial Intelligence Laboratory. He completed his PhD in computer science at Cornell in 2015. His research interests include techniques for scalable and accurate inference in graphical models, large-scale combinatorial optimization, and robust decision making under uncertainty, and is motivated by a range of applications, in particular ones in the emerging field of computational sustainability. Stefano's research has won several awards, including three Best Paper Awards, a World Bank Big Data Innovation Challenge, and was selected by Scientific American as one of the 10 World Changing Ideas in 2016. He is a recipient of the Sony Faculty Innovation Award and NSF CAREER Award.

Stefano Ermon, PhD
Title
Assistant Professor, Department of Computer Science Fellow, Woods Institute for the Environment at Stanford University
Category
west2017talks
