Colleen Molloy Farrelly

Colleen Molloy Farrelly

Chief Mathematician at Post Urban Ventures

    Colleen M. Farrelly is a mathematician and data scientist focused on network science, topological data analysis, generative AI, and psychometrics. She focuses on machine learning for social good, including many initiatives in Africa. Her current affiliations are Post Urban Ventures (UK) and Candlesticks (Kenya), as well as academic partners in the US and Africa, with whom she publishes. She is the author of The Shape of Data and a forthcoming network science book.

    All Sessions by Colleen Molloy Farrelly

    Day 1 04/23/2024
    11:20 am - 11:50 am

    Generative AI for Social Good

    <span class="etn-schedule-location"> <span class="firstfocus">Generative AI</span> </span>

    This talk will focus on current generative AI methods, including image and text generation, with a focus on social good applications, including medical imaging applications, diversity training applications, public health initiatives, and underrepresented language applications. We'll start with an overview of common generative AI algorithms for image and text generation before launching into a series of case studies with more specific algorithm overviews and their successes on social good projects. We'll explore an algorithm called TopoGAN that is being used to augment medical image samples. We'll look at GPT-4 and open-source large language models (LLMs) that can generate cases of bias and fairness. We'll consider how language translation and image generators such as stable diffusion can quickly produce public health campaign material. Finally, we'll explore language generation with low-resource languages like Hausa and Swahili, highlighting the potential for language applications in the developing world to aid businesses, governments, and non-profits communicating with local populations. We'll end the talk with a discussion of ethical generative AI and potential for misuse. Learning outcomes include familiarity with common generative AI algorithms and sources, their uses in a variety of settings, and ethical considerations when developing generative AI algorithms. This will equip programming-oriented data scientists with a background to implement algorithms themselves and business-focused analytics professionals with a background to consider strategic initiatives that might benefit from generative AI.

    Day 1 04/23/2024
    11:20 am - 11:50 am

    Generative AI for Social Good

    <span class="etn-schedule-location"> <span class="firstfocus">Generative AI</span> </span>

    This talk will focus on current generative AI methods, including image and text generation, with a focus on social good applications, including medical imaging applications, diversity training applications, public health initiatives, and underrepresented language applications. We'll start with an overview of common generative AI algorithms for image and text generation before launching into a series of case studies with more specific algorithm overviews and their successes on social good projects. We'll explore an algorithm called TopoGAN that is being used to augment medical image samples. We'll look at GPT-4 and open-source large language models (LLMs) that can generate cases of bias and fairness. We'll consider how language translation and image generators such as stable diffusion can quickly produce public health campaign material. Finally, we'll explore language generation with low-resource languages like Hausa and Swahili, highlighting the potential for language applications in the developing world to aid businesses, governments, and non-profits communicating with local populations. We'll end the talk with a discussion of ethical generative AI and potential for misuse. Learning outcomes include familiarity with common generative AI algorithms and sources, their uses in a variety of settings, and ethical considerations when developing generative AI algorithms. This will equip programming-oriented data scientists with a background to implement algorithms themselves and business-focused analytics professionals with a background to consider strategic initiatives that might benefit from generative AI.

    Open Data Science

     

     

     

    Open Data Science
    One Broadway
    Cambridge, MA 02142
    info@odsc.com

    Privacy Settings
    We use cookies to enhance your experience while using our website. If you are using our Services via a browser you can restrict, block or remove cookies through your web browser settings. We also use content and scripts from third parties that may use tracking technologies. You can selectively provide your consent below to allow such third party embeds. For complete information about the cookies we use, data we collect and how we process them, please check our Privacy Policy
    Youtube
    Consent to display content from - Youtube
    Vimeo
    Consent to display content from - Vimeo
    Google Maps
    Consent to display content from - Google